第37部分(第3/4 頁)
玄參校。胄玄駁難雲:“焯歷有歲率、月率,而立定朔,月有三大、三小。案歲率、月率者,平朔之章歲、章月也。以平朔之率而求定朔,值三小者,猶以減三五為十四;值三大者,增三五為十六也。校其理實,並非十五之正。故張衡及何承天創有此意,為難者執數以校其率,率皆自敗,故不克成。今焯為定朔,則須除其平率,然後為可。”互相駁難,是非不決,焯又罷歸。
四年,駕幸汾陽宮,太史奏曰:“日食無效。”帝召焯,欲行其歷。袁允方幸於帝,左右胄玄,共排焯歷,又會焯死,歷竟不行。術士鹹稱其妙,故錄其術雲。甲子元,距大隋仁壽四年甲子積一百萬八千八百四十算。
歲率,六百七十六。
月率,八千三百六十一。
朔日法,千二百四十二。
朔實,三萬六千六百七十七。
旬周,六十。
朔辰,百三半。
日干元,五十二。
日限,十一。
盈泛,十六。
虧總,十七。
推經朔術:
置入元距所求年,月率乘之,如歲率而一,為積月,不滿為閏衰。朔實乘積月,滿朔日法得一,為積日,不滿為朔餘。旬周去積日,不盡為日,即所求年天正經朔日及餘。
求上下弦、望:加經朔日七、餘四百七十五小,即上弦經日及餘。又加得望、下弦及後月朔。就徑求望者,加日十四、餘九百五十半;下弦加日二十二、餘百八十三大;後月朔加日二十九,餘六百五十九。每月加閏衰二十大,即各其月閏衰也。
凡月建子為天正,建醜為地正,建寅為人正。即以人正為正月,統求所起,本於天正。若建歲歷從正月始,氣、候、月、星,所值節度,雖有前卻,並亦隨之。其前地正為十二月,天正為十一月,並諸氣度皆屬往年。其日之初,亦從星起,晨前多少,俱歸昨日。若氣在夜半之後,量影以後日為正。諸因加者,各以其餘減法,殘者為全餘。若所因之餘滿全餘以上,皆增全一而加之,減其全餘;即因餘少於全餘者,不增全加,皆得所求。分度亦爾。凡日不全為餘,積以成餘者曰秒;度不全為分,積以成分者曰篾;其有不成秒曰麼,不成篾曰么。其分、餘、秒、篾,皆一為小,二為半,三為大,四為全,加滿全者從一。其三分者,一為少,二為太。若加者,秒篾成法,從分餘。分餘滿法從日度一,日度有所滿,則從去之。而日命以日辰者,滿旬周則亦除;命有連分、餘、秒、篾者,亦隨全而從去。其日度雖滿,而分秒不滿者,未可從去,仍依本數。若減者,秒篾不足,減分餘一,加法而減之;分餘不足減者,加所從去或前日度乃減之。即其名有總,而日度全及分餘共者,須相加除,當皆連全及分餘共加除之。若須相乘,有分餘者,母必通全內子,乘訖報除。或分餘相併,母不同者,子乘而並之。母相乘為法,其並,滿法從一為全,此即齊同之也。既除為分餘而有不成,若例有秒篾,法乘而又法除,得秒篾數。已為秒篾及正有分餘,而所不成不復須者,須過半從一,無半棄之。若分餘其母不等,須變相通,以彼所法之母乘此分餘,而此母除之,得彼所須之子。所有秒篾者,亦法乘,不滿此母,又除而得其數。麼么亦然。其所除去而有不盡全,則謂之不盡,亦曰不如。其不成全,全乃為不滿分、餘、秒、篾,更曰不成。凡以數相減,而有小及半、太須相加減,同於分餘法者,皆以其母三四除其氣度日法,以半及太、大本率二三乘之,少、小即須因所除之數隨其分餘而加減焉。秋分後春分前為盈泛,春分後秋分前為虧總,須取其數。泛總為名,指用其時,春分為主,虧日分後,盈日分前。凡所不見,皆放於此。
氣日法,四萬六千六百四十四。
歲數,千七百三萬六千四百六十六半。
度準,三百三十八。
約率,九。
氣辰,三千八百八十七。
餘通,八百九十七。
秒法,四十八。
麼法,五。
推氣術:
半閏衰乘朔實,又度準乘朔餘,加之,如約率而一,所得滿氣日法為去經朔日,不滿為氣餘。以去經朔日,即天正月冬至恆日定餘,乃加夜數之半者,減日一,滿者因前,皆為定日。命日甲子算外,即定冬至日。其餘如半氣辰千九百四十三半以下者,為氣加子半後也;過以上,先加此數,乃氣辰而一,命以辰算外,即氣所在辰。十二辰外,為子初以後餘也。又十二乘辰餘:
四為小太,亦曰少;
本章未完,點選下一頁繼續。