第10部分(第2/4 頁)
聚焦成沿著黑洞旋轉軸,也即它的北極和南極方向往外噴射的射流。在許多星系和類星體中確實觀察到這類射流。
人們還可以考慮存在質量比太陽小很多的黑洞的可能性。因為它們的質量比強德拉塞卡極限低,所以不能由引力坍縮產生:這樣小質量的恆星,甚至在耗盡了自己的核燃料之後,還能支援自己對抗引力。只有當物質由非常巨大的壓力壓縮成極端緊密的狀態時,這小質量的黑洞才得以形成。一個巨大的氫彈可提供這樣的條件:物理學家約翰·惠勒曾經算過,如果將世界海洋裡所有的重水製成一個氫彈,則它可以將中心的物質壓縮到產生一個黑洞。(當然,那時沒有一個人可能留下來去對它進行觀察!)更現實的可能性是,在極早期的宇宙的高溫和高壓條件下會產生這樣小質量的黑洞。因為一個比平均值更緊密的小區域,才能以這樣的方式被壓縮形成一個黑洞。所以當早期宇宙不是完全光滑的和均勻的情形,這才有可能。但是我們知道,早期宇宙必須存在一些無規性,否則現在宇宙中的物質分佈仍然會是完全均勻的,而不能結塊形成恆星和星系。
很清楚,導致形成恆星和星系的無規性是否導致形成相當數目的“太初”黑洞,這要依賴於早期宇宙的條件的細節。所以如果我們能夠確定現在有多少太初黑洞,我們就能對宇宙的極早期階段瞭解很多。質量大於10億噸(一座大山的質量)的太初黑洞,可由它對其他可見物質或宇宙膨脹的影響被探測到。然而,正如我們需要在下一章 看到的,黑洞根本不是真正黑的,它們像一個熱體一樣發光,它們越小則發熱發光得越厲害。所以看起來荒謬,而事實上卻是,小的黑洞也許可以比大的黑洞更容易地被探測到。 第七章 黑洞不是這麼黑的
在1970年以前,我關於廣義相對論的研究,主要集中於是否存在一個大爆炸奇點。然而,同年11月我的女兒露西出生後不久的一個晚上,當我上床時,我開始思考黑洞的問題。我的殘廢使得這個過程相當慢,所以我有許多時間。那時候還不存在關於空間——時間的那一點是在黑洞之內還是在黑洞之外的準確定義。我已經和羅傑·彭羅斯討論過將黑洞定義為不能逃逸到遠處的事件集合的想法,這也就是現在被廣泛接受的定義。它意味著,黑洞邊界——即事件視界——是由剛好不能從黑洞逃逸而永遠只在邊緣上徘徊的光線在空間——時間裡的路徑所形成的(圖7。1)。這有點像從警察那兒逃開,但是僅僅只能比警察快一步,而不能徹底地逃脫的情景!
圖7。1
我忽然意識到,這些光線的路徑永遠不可能互相靠近。如果它們靠近了,它們最終就必須互相撞上。這正如和另一個從對面逃離警察的人相遇——你們倆都會被抓住:(或者,在這種情形下落到黑洞中去。)但是,如果這些光線被黑洞所吞沒,那它們就不可能在黑洞的邊界上呆過。所以在事件視界上的光線的路徑必須永遠是互相平行運動或互相散開。另一種看到這一點的方法是,事件視界,亦即黑洞邊界,正像一個影子的邊緣——一個即將臨頭的災難的影子。如果你看到在遠距離上的一個源(譬如太陽)投下的影子,就能明白邊緣上的光線不會互相靠近。
如果從事件視界(亦即黑洞邊界)來的光線永遠不可能互相靠近,則事件視界的面積可以保持不變或者隨時間增大,但它永遠不會減小——因為這意味著至少一些在邊界上的光線必須互相靠近。事實上,只要物質或輻射落到黑洞中去,這面積就會增大(圖7。2);或者如果兩個黑洞碰撞併合併成一個單獨的黑洞,這最後的黑洞的事件視介面積就會大於或等於原先黑洞的事件視介面積的總和(圖7。3)。事件視介面積的非減性質給黑洞的可能行為加上了重要的限制。我如此地為我的發現所激動,以至於當夜沒睡多少。第二天,我給羅傑·彭羅斯打電話,他同意我的結果。我想,事實上他已經知道了這個面積的性質。然而,他是用稍微不同的黑洞定義。他沒有意識到,假定黑洞已終止於不隨時間變化的狀態,按照這兩種定義,黑洞的邊界以及其面積都應是一樣的。
圖7。2圖7。3
人們非常容易從黑洞面積的不減行為聯想起被叫做熵的物理量的行為。熵是測量一個系統的無序的程度。常識告訴我們,如果不進行外加干涉,事物總是傾向於增加它的無序度。(例如你只要停止保養房子,看會發生什麼?)人們可以從無序中創造出有序來(例如你可以油漆房子),但是必須消耗精力或能量,因而減少了可得到的有序能量的數量。
熱力學第二定律是這個觀念的一個準
本章未完,點選下一頁繼續。